K(+)- and HCO3(-)-dependent acid-base transport in squid giant axons. I. Base efflux

نویسندگان

  • E M Hogan
  • M A Cohen
  • W F Boron
چکیده

We used microelectrodes to monitor the recovery (i.e., decrease) of intracellular pH (pHi) after using internal dialysis to load squid giant axons with alkali to pHi values of 7.7, 8.0, or 8.3. The dialysis fluid (DF) contained 400 mM K+ but was free of Na+ and Cl-. The artificial seawater (ASW) lacked Na+, K+, and Cl-, thereby eliminating effects of known acid-base transporters on pHi. Under these conditions, halting dialysis unmasked a slow pHi decrease caused at least in part by acid-base transport we refer to as "base efflux." Replacing K+ in the DF with either NMDG+ or TEA+ significantly reduced base efflux and made membrane voltage (Vm) more positive. Base efflux in K(+)-dialyzed axons was stimulated by decreasing the pH of the ASW (pHo) from 8 to 7, implicating transport of acid or base. Although postdialysis acidifications also occurred in axons in which we replaced the K+ in the DF with Li+, Na+, Rb+, or Cs+, only with Rb+ was base efflux stimulated by low pHo. Thus, the base effluxes supported by K+ and Rb+ appear to be unrelated mechanistically to those observed with Li+, Na+, or Cs+. The combination of 437 mM K+ and 12 mM HCO3- in the ASW, which eliminates the gradient favoring a hypothetical K+/HCO3- efflux, blocked pHi recovery in K(+)-dialyzed axons. However, the pHi recovery was not blocked by the combination of 437 mM Na+, veratridine, and CO2/HCO3- in the ASW, a treatment that inverts electrochemical gradients for H+ and HCO3- and would favor passive H+ and HCO3- fluxes that would have alkalinized the axon. Similarly, the recovery was not blocked by K+ alone or HCO3- alone in the ASW, nor was it inhibited by the K-H pump blocker Sch28080 nor by the Na-H exchange inhibitors amiloride and hexamethyleneamiloride. Our data suggest that a major component of base efflux in alkali-loaded axons cannot be explained by metabolism, a H+ or HCO3- conductance, or by a K-H exchanger. However, this component could be mediated by a novel K/HCO3- cotransporter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K(+)- and HCO3(-)-dependent acid-base transport in squid giant axons II. Base influx

We used microelectrodes to determine whether the K/HCO3 cotransporter tentatively identified in the accompanying paper (Hogan, E. M., M. A. Cohen, and W. F. Boron. 1995. Journal of General Physiology. 106:821-844) can mediate an increase in the intracellular pH (pHi) of squid giant axons. An 80-min period of internal dialysis increased pHi to 7.7, 8.0, or 8.3; the dialysis fluid was free of K+,...

متن کامل

Sodium efflux in Myxicola giant axons

Several properties of the Na pump in giant axons from the marine annelid Myxicola infundibulum have been determined in an attempt to characterize this preparation for membrane transport studies. Both NaO and KO activated the Na pump of normal microinjected Myxicola axons. In this preparation, the KO activation was less and the NaO activation much greater than that found in the squid giant axon....

متن کامل

Effect of ATP on the Calcium Efflux in Dialyzed Squid Giant Axons

Dialysis perfusion technique makes it possible to control the internal composition of squid giant axons. Calcium efflux has been studied in the presence and in the virtual absence (<5 microM) of ATP. The mean calcium efflux from axons dialyzed with 0.3 microM ionized calcium, [ATP](i) > 1,000 microM, and bathed in artificial seawater (ASW) was 0.24 +/- 0.02 pmol.cm(-2).s(-1) (P/CS) (n = 8) at 2...

متن کامل

Effects of Intracellular Adenosine-5'-diphosphate and Orthophosphate on the Sensitivity of Sodium Efflux from Squid Axon to External Sodium and Potassium

A study was made of sodium efflux from squid giant axon, and its sensitivity to external K and Na. When sodium efflux from untreated axons was strongly stimulated by K(o), Na(o) was inhibitory; when dependence on K(o) was low, Na(o) had a stimulatory effect. Incipient CN poisoning or apyrase injection, which produces high intracellular levels of ADP(1) and P(i), rendered sodium efflux less depe...

متن کامل

Elevated [Cl-]i, and [Na+]i inhibit Na+, K+, Cl- cotransport by different mechanisms in squid giant axons

Bumetanide-sensitive (BS) unidirectional fluxes of (36)Cl- or (22)Na+ were measured in internally dialyzed squid giant axons while varying the intra- or extracellular concentrations of Na+ and/or Cl-. Raising either [Cl-]i or [Na+]i resulted in a concentration-dependent reduction of the BS influx of both (36)Cl- and (22)Na+. Raising [Cl-]i above 200 mM completely blocked BS influxes. However, r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 106  شماره 

صفحات  -

تاریخ انتشار 1995